Stochastic Learning of Equilibria in Games: The Ordinary Differential Equation Method
نویسندگان
چکیده
Our purpose is to discuss stochastic algorithms to learn equilibria in games, and their time of convergence. To do so, we consider a general class of stochastic algorithms that converge weakly (in the sense of weak convergence for stochastic processes) towards solutions of particular ordinary differential equations, corresponding to their mean-field approximations. Tuning parameters in these algorithms provides several dynamics having limit points related to Nash equilibria, and hence provide means to compute equilibria in a distributed fashion in games. We relate the time of convergence of stochastic dynamics to the time of convergence of their corresponding ordinary differential equation. This gives lower and upper bounds on the time needed to learn equilibria in games through such stochastic dynamics.
منابع مشابه
ar X iv : c s / 05 01 05 2 v 1 [ cs . I T ] 2 1 Ja n 20 05 STOCHASTIC DIFFERENTIAL GAMES IN A NON - MARKOVIAN SETTING
Stochastic differential games are considered in a non-Markovian setting. Typically, in stochastic differential games the modulating process of the diffusion equation describing the state flow is taken to be Markovian. Then Nash equilibria or other types of solution such as Pareto equilibria are constructed using Hamilton-Jacobi-Bellman (HJB) equations. But in a non-Markovian setting the HJB met...
متن کامل[hal-00782034, v1] Learning Equilibria in Games by Stochastic Distributed Algorithms
We consider a class of fully stochastic and fully distributed algorithms, that we prove to learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that we prove to converge weakly (in the sense of weak convergence for probabilistic processes) towards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case. We focus then on a cla...
متن کاملLearning Equilibria in Games by Stochastic Distributed Algorithms
We consider a class of fully stochastic and fully distributed algorithms, that we prove to learn equilibria in games. Indeed, we consider a family of stochastic distributed dynamics that we prove to converge weakly (in the sense of weak convergence for probabilistic processes) towards their mean-field limit, i.e an ordinary differential equation (ODE) in the general case. We focus then on a cla...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کامل